
A Test Generation Tool for Speci�cations in the

Form of State Machines1

Q. M. Tan, A. Petrenko and G. v. Bochmann
Department d'IRO, Universit�e de Montre�al

C.P. 6128, Succ. Centre-Ville, Montre�al, P.Q. H3C 3J7, Canada
E-mail:tanq@iro.umontreal.ca Fax:(514)343-5834

ABSTRACT: This paper describes a software tool, TAG (Test Automatic Generation),
that automatically generates test cases for an FSM speci�cation. It implements the so-
called transition identi�cation approach for test derivation, and may output test cases in
the form of an SDL skeleton. The description focuses on the functions of the tool and the
methods implemented in the tool, especially, the heuristic solution to the minimization
of state identi�cation sequences.

1 Introduction

The �nite state machines (FSMs) have been an important model in certain high integrity
software developments; especially, it has been extensively used in the testing phases of
system developments, for example, conformance testing of communication protocols.

Communication protocols are the rules that govern the communication between the
di�erent components within a distributed system. In order to organize the complexity of
these rules, they are usually partitioned into a hierarchy of several layers, as exempli�ed by
the 7-layer OSI model. Several formal description techniques have also been established
for formal speci�cations of protocols, amongst which SDL [1] and Estelle [6] are based on
the FSM model. A protocol speci�cation generally can lead to several implementations
in software and/or hardware, and it is very important to test an implementation against
the speci�cation in order to assure the compatibility with other implementations of the
same protocol. This is called protocol conformance testing.

Quite a number of methods have been proposed in the literature for generating tests
from speci�cations given in the form of FSMs, and several of them have been implemented
as automated software tools [7, 13, 5, 15, 17, 19, 8, 14, 16, 11, 12]. Most of the methods
not only check each transition in an FSM speci�cation at least once, which corresponds
to the branch coverage criteria often used in software testing, but also verify the tail
state of the transition to obtain high fault coverage and to guarantee conformance in
the context of a more general fault model. The tail states are generally veri�ed by the
state identi�cation techniques [7, 15, 19, 8, 14, 11, 12]. Without state identi�cation, test
cases do not guarantee to detect the fault that the machine enters a di�erent state than
speci�ed.

Most of the existing protocols are not completely speci�ed, in the sense that in real
communication systems, not all the sequences of interactions are foreseen. However,

1This work was largely funded by EICON Technologies in the context of a CANARIE project.

1

most of the existing test derivation methods for protocols, especially the existing tools,
are limited to completely speci�ed speci�cations. Even though one may impose some
implicit de�nition for \unde�ned" transitions in a partially speci�ed FSM, in many cases
\unde�ned" means \don't care" or \forbidden" [4], and it is not necessary or not feasible
to transform a partially speci�ed FSM to a completely speci�ed FSM for test derivation.
Based on the method given in [12], we developed a software tool TAG (Test Automatic
Generation) working directly for deterministic, partially speci�ed FSM speci�cations.

Using this tool, a complete test suite that guarantees full fault coverage, or a set of
test cases that cover a given test purpose, may be derived. The test output may be
in TTCN-like mnemonic format or in the form of an SDL skeleton. The inclusion of the
state identi�cation in test cases is optional. A simple and readable language is supplied to
describe an FSM speci�cation, as explained in Section 2. A heuristic method for obtaining
minimal state identi�cation sequences has been deveopled and is described in Section 3.
This method reduces the size of the obtained test suite. In Section 4, we discuss the
results of some experiments and applications of our tool.

2 Using the tool

2.1 An Example

TAG implements the so-called transition identi�cation approach for test derivation from
an FSM. In particular, to achieve a particular test purpose which is a certain transition
to be tested, the following steps have to be performed:

� bring the FSM from its initial state to the starting state of the transition under test
using the shortest input sequence possible (called a preamble of the test case);

� execute the transition and check the observed output;

� check a tail state of the transition by observing its reaction to a pre-selected set of
state identi�cation sequences, which can verify the correctness of the tail state (a
test body to achieve the test purpose);

� apply an input sequence to return to the initial state of the FSM (a postamble of
the test case). The user may specify a so-called homing sequence which is expected
to take the FSM from any state back to the initial state.

The set of all preambles is called a state cover; the set of sequences used to execute
all speci�ed transitions is called a transition cover.

State identi�cation sequences are input sequences which distinguish states by their
output reactions. Some FSMs may have undistinguishable states for which there exists
no sequence which tells them apart. If this is the case for the given FSM then the tool
still produces test cases, however, certain transfer faults in implementations might not be
detected. A reduced or minimal machine [12] has no undistinguishable states, and the
tool produces a test suite for such a machine with the guaranteed coverage of all output
and transfer faults within the speci�ed number of states.

2

S 0

S 1

S 2 S 3

2/2

5/7

4/5
5/6

1/0

4/4 1/0

4,5/0

2/2
1/1

2/2

1,4,5/03/3

Figure 1: The INRES responder

The tool implements the so-called HSI method [12, 14] which is similar to the widely
usedW-method [7] in which a characterization set is used for state identi�cation. However,
the HSI-method uses a tuple of subsets of a W set for the identi�cation of each state and
can be applied to partially speci�ed FSMs.

To illustrate the process of test derivation based on this method, consider the INRES
protocol [9]. This simple protocol has been widely used in a number of publications, so
we omit here its detailed explanation. The behavior of the responder part of this protocol
can be speci�ed by an FSM shown Figure 1. The input alphabet is : 1- CR; 2- IDISreq;
3- ICONrsp; 4- DT0; 5- DT1. The output alphabet is 0- NULL; 1- ICONind, 2- DR;
3- CC; 4- ACK0; 5- ACK0,IDATind; 6- ACK1; 7-ACK1,IDATind. The states are: S0-
Closed (the initial state); S1- Opening; S2- Waiting DT0; S3- Waiting DT1. The FSM is
deterministic and partially speci�ed.

The �nal test suite and intermediate results are shown in the following table. Note
that no postambles are included in the test cases of the following test suite.

State S0 S1 S2 S3

State Identi�er 41 41 4 4
Preamble (State cover) " 1 13 135
Transition Cover 1,4,5, 11,12,13,14,15 131,132,134,135 1351,1352,1354,1355
Postamble " 2 2 2

Test Suite f 41, 441, 541, 1241, 13241, 135241, 141, 1141, 1441, 1541,
134, 1314, 13544, 13514, 13554 g

The tool supports the following two modes of test derivation:

1) Complete test derivation, when a test suite has to test all transitions speci�ed in the
given FSM.

2) Selective test derivation, when a test case has to test a single transition given as a
test purpose.

For selective test derivation, the test purpose is given by a state and input. For
example, in order to test the transition starting at S1 and ending at S2 with input 3 and
output 3, state S1 and input 3 are given as the test purpose. Test case 134 will be derived,

3

where the �rst 1 is preamble, the second 3 is to test the given transition, and the last 4
is used to identify the state S2. For this test case a postamble 2 is also given to lead the
FSM back to the initial state.

2.2 Functions Provided by the Tool

Before starting the tool, the user must have a text �le containing the FSM speci�cation
with su�x \.fsm". This �le can be produced by transforming an SDL speci�cation through
the tool FEX [2], or directly by using a text editor. The FSM speci�cation is required to
be deterministic and initially connected, but it may be partially or completely speci�ed.

First the text �le is loaded and compiled. Two �les containing the symbol table (with
su�x ".tbl") and the FSM structure (with su�x ".cpl") are created after compiling.
Then the FSM speci�cation is analysed, the tool displays the related information, such
as whether or not it is initially connected, and whether or not it has undistinguishable
states, equivalent states, etc.

If there are non-deterministic transitions in a certain state in a given speci�cation, one
among these non-deterministic transitions is kept in the compiled FSM and the others
are ignored. Test derivation for an FSM with undistinguishable states is also possible,
though some faults in these states might not be detected. In these two cases the tool will
prompt a warning message.

One may choose complete or selective test derivation. In selective test derivation, one
must �rst give the test purpose, which speci�es one transition in the FSM. One test case
is produced for the test purpose, and consists of a preamble, a transition under test, an
optional state identi�cation sequence and a postamble.

When using complete test derivation, a complete test suite is generated, and each test
case consists of an integrated part composed of a preamble, a transition under test and
an optinal state identi�cation, and a postamble part. No test purpose is given.

The test output is written in a text �le in one of the following two formats.

- Mnemonic format (with su�x ".mnc")
- SDL skeleton (with su�x ".sdl")

The state table of the complied FSM speci�cation and intermediate results of test
derivation, including preambles, state identi�cation sequences and postambles, can be
displayed in a numeric form. The mapping between mnemonic names in the speci�cation
and numeric codes in the state table is also displayed.

A test case in the form of an SDL skeleton for the INRES responder is given in
Appendix 2. The test case is used to verify that the responder accepts a service ICONrsp
(3) in the Opening state (S1).

2.3 Required Input: the FSM speci�cation

In order to derive test cases, the tool requires the user to prepare previously a script �le
which de�nes an FSM speci�cation by giving the names of states, inputs and outputs as
well as the transitions.

4

An FSM description consists of six parts: (1) the state de�nitions, (2) the input de�ni-
tions, (3) the output de�nitions, (4) the transition de�nitions, (5) the variable declaration
and (6) the homing sequence de�nition; parts (5) and (6) are optional. At the end of a
script a keyword \end;" should be put. The following is a script �le for the INRES re-
sponder.

/* This an FSM script for the INRES responder */

Variables:

v Integer;

STATES:

Closed;

Opening;

Wait DT0;

Wait DT1;

INPUTS:

CR :PDU;

IDISreq;

ICONrsp;

DT(v=0) :PDU;

DT(v=1) :PDU;

OUTPUTS:

ICONind;

DR :PDU;

CC :PDU;

ACK(v=0) :PDU

ACK(v=1) :PDU;

IDATind;

comb1: ACK(v=0):PDU,IDATind;

comb2: ACK(v=1):PDU,IDATind;

TRANSTIONS:

Closed ?CR !ICONind >Opening;

Closed ?DT(v=0) !NULL >Closed;

Closed ?DT(v=1) !NULL >Closed;

Opening ?ICONrsp !CC >Wait DT0;

Opening ?IDISreq !DR >Closed;

Opening ?CR !NULL >Opening;

Opening ?DT(v=0) !NULL >Opening;

Opening ?DT(v=1) !NULL >Opening;

Wait DT0 ?IDISreq !DR >Closed;

Wait DT0 ?DT(v=0) !ACK(v=0) >Wait DT0;

Wait DT0 ?DT(v=1) !comb2 >Wait DT1;

Wait DT0 ?CR !NULL >Wait DT0;

Wait DT1 ?IDISreq !DR >Closed;

Wait DT1 ?DT(v=0) !comb1 >Wait DT0;

Wait DT1 ?DT(v=1) !ACK(v=1) >Wait DT1;

Wait DT1 ?CR !NULL >Wait DT1;

End;

5

The state de�nitions are a list of state names; the input de�nitions are a list of input
names; and the output de�nitions are a list of output names. A short name, such as \S0",
\X1",\idle",\Y5", etc., may be put in the front of a name and separated by a `:'. In the
above script, \comb1" and \comb2" are two short names. The shortnames are used in
the transition de�nitions and test outputs as a short hand notation.

Two di�erent inputs or outputs may have the same name but are distinguished by
di�erent parameters. For example in the case of X.25, a n connect ack.rsp call with the
parameter 1 accepts an incoming connection, while with the parameter 0, it refuses the
connection request. The two input names may be de�ned as:

n connect ack.rsp(RC=1);
n connect ack.rsp(RC=0);

where RC is an integer variable, which may take di�erent values. A list of parameters
separated by `,' may occur in an input or output. The variables in parameters may be
the names which are declared by the variable de�nition or any C expression.

The key word \pdu" is used to indicate that an input or output is a protocol data
unit (PDU). Without this tag, the input or output is supposed to be an abstract service
primitive.

Several outputs may be combined into a single output. For such a combined output,
a short name is necessary. In the test output that is in the form of a SDL skeleton, the
service primitives and PDUs in a combined output may occur in arbitrary oder, since they
occurs at di�erent interaction points, For example, for output ACK(v=0):PDU,IDATind, it
is not determined whether PDU ACK or service primitive IDATind occurs �rst. However,
if output is OUT1,OUT2,OUT3:PDU, then OUT2 must follow OUT1, because these primitives
occur at the same interaction point.

The transition de�nitions de�ne the FSM state table itself by a list of transition
speci�cations. Each transition speci�cation consists of a current state name, input name,
output name and next state name, introduced by `?', `!' and `>', respectively. These
names may be a short name or a full name as de�ned earlier. Every transition may be
followed by a set of the comments related to the transition, included between `' and `'.
The coments will be inserted in the corresponding places in a derived test case in the form
of an SDL skeleton for the purpose of helping the user to select appropriate parameters.

The variable de�nitions de�ne the variables in parameters. The variable types are \In-
teger", \Charstring", \Octetstring" and \Boolean". The charstring type is any sequence
of printable ASCII characters enclosed between `"', such as "abc"; the octetstring type is
any sequence of ASCII codes enclosed between `0', such as 0n23n34n1280; the boolean type
is \true" and \false".

The user may use keyword \homing" to give a sequence of input names as a homing
sequence of the FSM speci�cation, that is, it leads the FSM from any state to the initial
state. The names in the homing sequence may be unde�ned input names. The principle
is that TAG adds a postamble in a test case, if there is a postamble for a tail state, the
postamble is used; otherwise, if the homing sequence is given, the homing sequence is
used. If there is no postamble and no homing sequence is given, no postamble is included
in the test case.

6

The formal grammar of the FSM script language is given in Appendix 1.

3 Test Derivation Methods

3.1 Preambles, Postambles and Transition Cover

To obtain preambles, a tree with the initial state as its root is constructed such that the
tail states of the outgoing transitions from the state corresponding to a current node,
if they have not become nodes of the tree, are added to the tree as sons of the current
node. All nodes in this tree must become a current node once and only once in the order
that they enter this tree. If there exist states that are not in this tree, then the FSM
is not initially connected; the path from the root to a given node is a preamble for the
corresponding state.

A similar procedure is also used to obtain a postamble from a given state, in which
a tree with this state as its root is constructed. Once the initial state has been added
to the tree, the procedure stops, and the path from the root to the last added node is a
postamble from the given state. If all the nodes in this tree are tried but the initial state
is not added, then there is no postamble from the given state.

For complete test derivation, for each state, the transition cover can be obtained by
appending each outgoing transition from this state to its preamble. For selective test
derivation, a transition is given by the user as the test purpose.

3.2 State Identi�cation Sequences

Given a deterministic, partial speci�ed FSM speci�cation S, the characterization set [7, 12]
W is a set of input sequences such that for any two distinguishable states of S, there exists a
sequence inW such that it can be accepted by both these two states and produce di�erent
outputs. It is usually not necessary to use the whole W for state identi�cation; subsets of
this set, called harmonized state identi�cation sets [12], can used for state identi�cation.

The harmonized state identi�cation sets (HSI sets) are a tuple of sets fD0;D1; : : : ;Dn�1g,
where Di is a set of pre�xes of sequences in W and n is the number of states of S. For
any two distinguishable states Si and Sj of S, there exists a sequence � that is a pre�x of
both �i 2 Di and �j 2 Dj such that � can be accepted by these two states and produces
di�erent outputs.

By adapting the FSM minimization algorithm given in [10], we can obtain a charac-
terization set for S in polynomial time. Further from this set, according to the above
de�nition, we can easily obtain HSI sets for S in polynomial time.

However, the state identi�cation sequences obtained in the above way are not optimal.
For example, a characterization set f4; 1g can be obtained for the speci�cation given in
Figure 1, and further from this set, the HSI sets are ff4; 1g; f4; 1g; f4; 1g; f4; 1gg. Obvi-
ously, if the sequences are used for state identi�cation, by comparison with the example
in Section 1, a test suite of nearby the double size will be derived.

7

For an FSM speci�cation, we say that a characterization set W is optimal if, �rst of
all, the number of sequences in W is minimal, and secondly the sum of their lengths is
minimal. Similarly, we say that a tuple of HSI sets is optimal if for the union of HSI sets
the number of sequences is minimal and secondly the sum of their lengths is minimal.
(Note that the union of all HSI sets for an FSM is also a characterization for this FSM.)

To obtain a minimal characterization set for a given FSM, as well as minimal harmo-
nized state identi�cation sets, may be an NP-hard problem [3]. A heuristic solution to
the minimization of a characterization set is tried by transforming this problem to the
so-called set cover problem in [3]. However, this method requires that a characterization
set W is given previously and only if there exists an optimal characterization set which
is contained in W , can a near optimal solution be obtained. For example, if the char-
acterization set f4; 1g for the FSM in Figure 1 is given, no better solution but this set
itself can be obtained using the method in [3]. However, as we have seen, f41g is a better
characterization set for the FSM in Figure 1 because it has only one sequence while the set
f4; 1g has two sequences. It is not easy to determine whether a given characterization set
contains an optimal one for a given FSM unless this set contains all sequences of length
less than the number of states.

The tool TAG uses also another heuristic solution in the following three steps to
attempt to obtain minimal HSI sets. In the �rst step A1, a set P0 of all the state pairs
that are distinguishable for the given FSM is produced. In the second step A2, with P0,
a characterization set W is obtained by forming a search tree from the input alphabet
to distinguish the state pairs in P0, such that an optimal solution could be contained in
W with great possibility. In the third step A3, from this W , some HSI set Di is selected
for each state i, such that the number of distinguishable state pairs and the length of a
sequence are traded o�.

The algorithm A1 is obtained by adapting the FSM minimization algorithm given in
[10]. This algorithm is also used in the FSM script compilation to tell the user which
states are indistinguishable and equivalent.

The algorithm A2 �rst forms the root as the current node to probe. In probing the
current node ti, for each input word, a son is built if it can lead to a better solution than
other built nodes. If it is estimated that a subtree with a minimal number of branches
and with a minimal average lenghth that distinguishes a maximal number of state pairs
could be formed by probing an unprobed son of ti, then this son is selected for a recurrent
probe. The selection and probe continue until the state pairs that are to be distinguished
by probing ti has been covered or there are no unprobed sons for ti. The tree built by the
algorithm forms the resulting W .

Note that the goal of this algorithm is to �nd a characterization set W that contains
optimal HSI sets. Thus the probe of the current node is not a�ected by any previous
probes. (Note that the sequences returned by a previous probe may distinguish some
state pairs that are to be distinguished by probing the current node.) This strategy will
lead to a bigger W , but the probability that an optimal solution is contained is increased,
too.

8

P: (1,2)(1,3)(2,3)
F:
K: (1,2)(1,3)(2,3)

F:
P: (0,1)(0,2)(0,3)(1,2)(1,3)(2,3)

K: (0,1)(0,2)(0,3)(1,2)(1,3)(2,3)

P:
F: (0,1)(0,2)(0,3)
K:

P: (0,1)

K: (0,1)
P: (0,1)

K: (0,1)

F:

F:

1
2 4

5

1

P:
F:
K:

3

0

6

1 2,3 4 5

(1,2)(1,3)(2,3)

Figure 2: Apply the algorithm A2 to the FSM in Figure 1

The algorithm A3 selects the HSI set Di for each state i of the given FSM from the W
obtained in the previous step. The algorithm starts with P0 as the set of remaining state
pairs. First a sequence �k in W is selected such that the weighted sum of its length and
the number of the state pairs that it can not distinguish in the left state pairs is minimal.
After �k is chosen, for each remaining state pair (l;m) that can be distinguished by �k,
�nd a pre�x of �k such that (l;m) is distinguished. Then the pre�x is put into the HSI
sets Dl and Dm. The above procedure is repeated until no state pairs remain.

For the FSM in Figure 1, the result P0 of the algorithm A1 is the set of all possible
state pairs. The characterization set W from the algorithm A2 is f41g. From this set,
the HSI sets ff41g; f41g; f4g; f4gg are produced by applying the algorithm A3. The
Figure 2 shows the search tree that is formed by applying the algorithm A2 to the INRES
speci�cation given in Figure 1. In the �gure, Pi is the set of the given state pairs that
have not been distinguished from the root to the node i, Fi is the set of the state pairs
that can not be distinguished from the root to i, and Ki is the set of the current state
pairs that are to be distinguished by probing i.

4 Experiments and Applications

Near 50 typical or randomly generated FSMs with a number of states between 4{8 have
been tried by the tool. We �nd that the optimal harmonized state identi�cation sets can
be derived by the tool from about 87% of the FSMs, and the number of sequences in
the union of harmonized state identi�cation sets is an average 1:4 less than that of the
characterization set obtained by applying the adapted FSM minimization algorithm given
in [10], where no sequences that are pre�xes of other sequences are computed.

The following table shows the CPU times taken by the tool for the derivation of state
identi�cation sequences for several FSMs of di�erent sizes. In the table, the CUP time is
an average of the CPU times for 10 FSMs of the same size that are produced randomly.
The FSMs have the number of inputs equal to the number of states and the number of
outputs equal to half the number of states. The experiment is done on a SUN SPARC
Station 2.

9

State number 10 25 50 75 100 150 200
Transition number 100 625 2500 5625 10000 23500 40000
CPU time (sec.) 0.11 0.40 2.96 11.73 40.87 197.06 760.89

The above table shows that the CPU time grows polynomially with the size of the
FSM.

The tool was also used to derive test cases for an X.25 packet level protocol, which is
speci�ed as an FSM with 18 states, 28 inputs, 32 outputs and total 471 transitions. The
number of test cases in the complete test suite derived by the tool is 687, an average of
1:4 test cases per transition.

The tool was also used in an experiment on optimal testability design [20]. This
experiment tries to �nd an optimal test suite for a given partially speci�ed FSM through
arbitrarily augmenting the \don't care" transitions (total 1,185,192 possibilities).

5 Conclusion

In this paper, we have presented the functions of the test generation tool TAG and
the methods used in this tool. In particular, we have proposed a heuristic solution to
derive near-optimal harmonized state identi�cation sets as well as characterization set
from an FSM. The performance of the tool is demonstrated by several experiments and
applications.

The tool only requires that the given FSM is deterministic and initially connected.
If there are undistinguishable states in the FSM, test derivation is still possible. In this
case, certain transition faults in implementations might not be detected by the derived
test cases. Complete or selective test derivation is provided, and the inclusion of the state
identi�cation sequences in test cases is optional. Test cases may be output in mnemonic
format or in the form of an SDL skeleton.

The test cases produced by the tool do not include test parameters. The test param-
eters should be added by the user. A tool for test parameter generation and selection has
also been implemented to assist the addition of the test parameters [2].

Other applications using the tool are the derivation of test cases for labeled transition
systems through transforming them into corresponding trace FSMs [18] and the derivation
of test cases for non-deterministic FSMs [11]. We have noted that a non-deterministic
FSM can be viewed as an LTS in a sense that a pair of input and output of a transition
in the FSM is treated as a label, and moreover any LTS can be transformed into a
deterministic trace FSM for testing trace-equivalence [18]. Thus the test suite for the
trace FSM could lead to a test suite for the given non-deterministic LTS.

References

[1] F. Belina and D. Hogrefe. The CCITT{speci�cation and description language SDL.
Computer Networks and ISDN Systems, 16(4):331{341, 1989.

10

[2] O Bellal, G. v. Bochmann, A. Petrenko, and Q. M. Tan. Tool chain for test case
derivation from sdl speci�cation. Technical report, Dept. of I.R.O., University of
Montreal { Hewlett Packard PTC Project, 1995.

[3] P. J. Bernhard. A reduced test suite for protocol conformance testing. ACM Trans-

actions on Software Engineering and Methodology, 3(3):201{220, 1994.
[4] G. v. Bochmann and A. Petrenko. Protocol testing: Review of methods and relevance

for software testing. In Proceeding of the ACM 1994 International Symposium on

Software Testing and Analysis, pages 109{124, Seattle USA, 1994.
[5] G. v. Bochmann and B. Sarikaya. Some experience with sequence generation for

protocols. In IFIP Protocol Speci�cation, Testing, and Veri�cation II. North-Holland,
1982.

[6] S. Budkowski and P. Dembinski. Introduction to ESTELLE: A speci�cation language
for distributed systems. Computer Networks and ISDN Systems, 14(1):3{23, 1987.

[7] T. S. Chow. Testing software design modeled by �nite-state machines. IEEE Trans-

actions on Software Engineering, SE-4(3):178{187, 1978.
[8] S. Fujiwara et al. Test selection based on �nite state models. IEEE Transactions on

Software Engineering, SE-17(6):591{603, 1991.
[9] D Hogrefe. OSI formal speci�cation case study: the inres protocol and service.

Technical report, University of Berne, 1991.
[10] G. J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall Soft-

ware Series, New Jersey, 1991.
[11] G. Luo, G. v. Bochmann, and A. Petrenko. Test selection based on communicat-

ing nondeterministic �nite state machines using a generalized Wp-method. IEEE

Transactions on Software Engineering, SE-20(2):149{162, 1994.
[12] G. Luo, A. Petrenko, and G. v. Bochmann. Selecting test sequences for partially-

speci�ed nondeterministic �nite machines. In IFIP 7th International Workshop on

Protocol Test Systems, pages 91{106, Japan, 1994.
[13] S. Naito and M. Tsunonyama. Fault{detection for sequential machines by transitions

tours. In Proceedinds of IEEE Fault Tolerant Computing Conference, pages 238{243,
1981.

[14] A. Petrenko. Checking experimentswith protocol machines. In IFIP 4th International

Workshop on Protocol Test Systems, pages 83{94. North-Holland, 1991.
[15] K. Sabnani and A. T. Dahbura. A protocol test generation procedure. Computer

Networks and ISDN Systems, 15(4):285{297, 1988.
[16] Y. N. Shen, F. Lombardi, and A. T. Dahbura. Protocol conformance testing using

multiple UIO sequences. IEEE Transactions on Communications, 40(8):1282{1293,
1992.

[17] D. P. Sidhu and T. K. Leung. Formal methods for protocol testing: A detailed study.
IEEE Transactions on Software Engineering, SE-15(4):413{426, 1989.

[18] Q. M. Tan, A. Petrenko, and G. v. Bochmann. Modeling basic LOTOS by FSMs for
conformance testing. In IFIP Protocol Speci�cation, Testing, and Veri�cation XIIII,
Poland, 1995.

[19] S. T. Vuong and et al. The UIOv-method for protocol test sequence generation. In
IFIP 2th International Workshop on Protocol Test Systems, pages 203{225. North-
Holland, 1990.

11

[20] N. Yevtushenko, A. Petrenko, R. Dssouli, K. Karoui, and S. Prokopenko. On the
design for testability of communication protocols. Technical Report 971, Dept.of
I.R.O., University of Montreal, 1995.

Appendix 1: The formal grammar of an FSM speci-

�cation

<FSM script> ::= [<variable defs>]<state defs><input defs><output defs>
[<homing def>]<transition defs> end';'

<variable defs> ::= variables':'<variable def>';'f<variable def>';'g
<state defs> ::= states':'<state def>';'f<state def>';'g
<input defs> ::= inputs':'<input def>';'f<input def>';'g
<output defs> ::= outputs':'<output def>';'f<output def>';'g
<transition defs> ::= transitions':'<transition def>';'f<transition def>';'g
<homing def> ::= <input name>f','<input name>g';'
<variable def> ::= <variable name> IntegerjCharstringjOctetstring jBoolean';'
<state def> ::= [<short name>':']<state name>';'
<input def> ::= [<short name>':']<input name>';'
<output def> ::= [<short name>':']<output name>';'j<short name>':'

<output names>';'
<transition def> ::= s name>'?'<i name>' !'<o name>'>'<s name>';'
<state name> ::= <identi�er>
<input name> ::= <identi�er>['('<parameters>')']
<output name> ::= <identi�er>['('<parameters>')']
<output names> ::= <output name>','<output name>f','<output name>g

<short name> ::= <identi�er>
<s name> ::= <short name> j <state name>
<i name> ::= <short name> j <input name>
<o name> ::= <short name> j <output name>
<parameters> ::= <parameter>f`,`<parameter>g

<parameter> ::= <v name> j <v name>'='<value>
<variable name> ::= <identi�er>
<v name> ::= <variable name> j <C expression>
<value> ::= <integer>j<charstring>j<octstring>jtruejfalse

Appendix 2: Example of test case in the form of an

SDL skeleton

/* Verify that an IUT accept ICONrsp in state Opening */

PROCEDURE preamble_to_state_Opening;

START;

TASK pdu!packet := CR;

/* USER: fill the PDU parameters */

OUTPUT l_data_out(pdu);

NEXTSTATE wait_ICONind;

12

STATE wait_ICONind;

INPUT ICONind(/* USER: fill parameters */)

/* USER: check the input parameters */

RETURN;

INPUT *;

MACRO fail('ICONind expected');

RETURN;

ENDPROCEDURE preamble_to_state_Opening;

PROCEDURE transition_under_test_in_Opening_on_ICONrsp;

START;

/* USER: fill the output parameters */

OUTPUT ICONrsp(/* USER: fill parameters */);

NEXTSTATE wait_CC;

STATE wait_CC;

INPUT l_data_in(pdu);

DECISION pdu!packet;

(CC): /* USER: check the PDU parameters */

RETURN;

ELSE: MACRO fail('CC expected');

RETURN;

ENDDECISION;

INPUT *;

MACRO fail('l_data_in with CC expected');

RETURN;

ENDPROCEDURE transition_under_test_in_Opening_on_ICONrsp;

PROCEDURE identifing_state_Wait_DT0;

START;

TASK pdu!packet := DT;

TASK pdu!v := 0;

OUTPUT l_data_out(pdu);

NEXTSTATE wait_ACK;

STATE wait_ACK;

INPUT l_data_in(pdu);

DECISION pdu!packet;

(ACK): /* USER: check the PDU parameters */

RETURN;

ELSE: MACRO fail('ACK expected');

RETURN;

ENDDECISION;

INPUT *;

MACRO fail('l_data_in with ACK expected');

RETURN;

ENDPROCEDURE identifing_state_Wait_DT0;

PROCEDURE postamble_from_state_Wait_DT0;

START;

/* USER: fill the output parameters */

OUTPUT IDISreq(/* USER: fill parameters */);

NEXTSTATE wait_DR;

13

STATE wait_DR;

INPUT *;

RETURN;

ENDPROCEDURE postamble_from_state_Wait_DT0;

/* Test purpose: verify the transition in state Opening on input ICONrsp */

PROCEDURE TestCase_in_Opening_on_ICONrsp;

START;

MACRO init_test_case;

CALL preamble_to_state_Opening;

MACRO exception;

CALL transition_under_test_in_Opening_on_ICONrsp;

MACRO exception;

CALL identifing_state_Wait_DT0,

MACRO exception;

MACRO pass();

CALL postamble_from_state_Wait_DT0;

exception_label:

RETURN;

ENDPROCEDURE TestCase_in_Opening_on_ICONrsp;

START;

Call /* USER: initialize IUT */;

MACRO exception;

Call TestCase_in_Opening_on_ICONrsp;

exception_label:

Call /* USER: clear up IUT */;

STOP;

14

